Paper 2 Option H

Further Mechanics 1 Mark Scheme (Section A)

Question	Scheme	Marks	AOs
1(a)	Using the model and $v^{2}=u^{2}+2 a s$ to find v	M1	3.4
	$\nu^{2}=2 a s=2 g \times 2.4=4.8 g \quad \Rightarrow \quad v=\sqrt{ }(4.8 g)$	A1	1.1b
	Using the model and $v^{2}=u^{2}+2$ as to find u	M1	3.4
	$0^{2}=u^{2}-2 g \times 0.6 \Rightarrow u=\sqrt{ }(1.2 g)$	A1	1.1b
	Using the correct strategy to solve the problem by finding the sep. speed and app. speed and applying NLR	M1	3.1b
	$e=\sqrt{ }(1.2 g) / \sqrt{ }(4.8 g)=0.5$ *	A1*	1.1b
		(6)	
(b)	Using the model and $e=$ sep. speed / app. speed, $v=0.5 \sqrt{ }(1.2 g)$	M1	3.4
	Using the model and $v^{2}=u^{2}+2 a s$	M1	3.4
	$0^{2}=0.25(1.2 g)-2 g h \Rightarrow h=0.15(\mathrm{~m})$	A1	1.1b
		(3)	
(c)	Ball continues to bounce with the height of each bounce being a quarter of the previous one	B1	2.2b
		(1)	
(10 marks)			
Notes:			
(a) M1: For a complete method to find v A1: For a correct value (may be numerical) M1: For a complete method to find u A1: For a correct value (may be numerical) M1: For finding both v and u and use of Newton's Law of Restitution A1*: For the given answer			
(b) M1: For use of Newton's Law of Restitution to find rebound speed M1: For a complete method to find h A1: For 0.15 (m) oe			
(c) B1: For a clear description including reference to a quarter			

Question	Scheme	Marks	AOs
2(a)	Energy Loss $=$ KE Loss - PE Gain	M1	3.3
	$=\frac{1}{2} \times 0.5 \times 25^{2}-0.5 g \times 20$	A1	1.1b
	$=58.25=58(\mathrm{~J})$ or $58.3(\mathrm{~J})$	A1	1.1b
		(3)	
(b)	Using work-energy principle, $20 R=58.25$	M1	3.3
	$R=2.9125=2.9$ or 2.91	A1ft	1.1b
		(2)	
(c)	Make resistance variable (dependent on speed)	B1	3.5c
		(1)	
(6 marks)			
Notes:			
(a) M1: For a difference in KE and PE A1: For a correct expression A1: For either 58 (2sf) or 58.3 (3sf)			
(b) M1: For use of work-energy principle A1ft: For either 2.9 (2sf) or 2.91 (3sf) follow through on their answer to (a)			
(c) B1: For variable resistance oe			

Question	Scheme	Marks	AOs
3(a)	Force $=$ Resistance (since no acceleration) $=30$	B1	3.1b
	Power $=$ Force \times Speed $=30 \times 4$	M1	1.1b
	$=120 \mathrm{~W}$	A1 ft	1.1b
		(3)	
(b)	Resolving parallel to the slope	M1	3.1b
	$F-60 g \sin \alpha-30=0$	A1	1.1b
	$F=70$	A1	1.1b
	Power $=$ Force \times Speed $=70 \times 3$	M1	1.1b
	$=210 \mathrm{~W}$	A1 ft	1.1b
		(5)	
(8 marks)			
Notes:			
(a) B1: For M1: For A1ft: For	For force $=30$ seen For use of $P=F v$ For 120 (W), follow through on their ' 30 '		
(b) M1: For A1: For A1: For M1: For A1ft: For	For resolving parallel to the slope with correct no. of terms and 60 g resolved For a correct equation For $F=70$ For use of $P=F v$ For 210 (W), follow through on their ' 70 '		

Question 4 notes continued:
(d)

M1: For substituting $e=\frac{5}{9}$ into their v and w
A1: \quad For correct expressions for v and w
M1: For use of Newton's Law of Restitution, with e on the correct side
M1: For use of appropriate inequality
A1: For a correct inequality
A1: For a correct range

Decision Mathematics 1 Mark Scheme (Section B)

Question 5 notes continued:

(c)

B1ft: For 213 or $189+$ their shortest repeat
M1: For translating the information in the question in to an equation involving $x, 2 x$ and 34
A1: For a correct equation leading to $\mathrm{BG}=10(\mathrm{~m})$

Question	Scheme	Marks	AOs
6	Objective line drawn or at least two vertices tested	M1	3.1a
	For solving $\mathrm{y}=4 x$ and $8 x+7 y=560$ to find the exact co-ordinate of the optimal point, must reach either $x=$ or $y=$	M1	1.1a
	$x=15 \frac{5}{9}$ and $y=62 \frac{2}{9}$	A1	1.1b
	Finding at least two points with integer co-ordinates from $(15 \pm 1,63 \pm 2)$	M1	1.1 b
	Testing at least two points with integer co-ordinates	M1	1.1 b
	$x=15$ and $y=63$	A1	2.2a
	So the teacher should buy 15 pens and 63 pencils	A1ft	3.2a
(7 marks)			
Notes:			
M1: Selecting an appropriate mathematical process to solve the problem - either drawing an objective line with the correct gradient (or reciprocal gradient), or testing at least two vertices in C			
M1: Solving simultaneous equations A1: cao M1: Recognition that outcome from this model is non-integer and integer solutions are required - testing two points with integer co-ordinates in at least one of $y \geq 4 x$ and $8 x+7 y \geq 560$			
M1: Testing at least two integer solutions in $y \geq 4 x$ or $8 x+7 y \geq 560$ and C A1: cao - deducing from tests which integer solution is both valid and optimal A1ft: Interpreting solution in the context of the question - gives their integer values for x and y in the context of pens and pencils			

Question	Scheme	Marks	AOs
8(a)	e.g. a graph cannot contain an odd number of odd nodes e.g. number of arcs $=\frac{1+3+4+4+5}{2}=8.5 \notin \mathbb{Z}$	B1	2.4
		(1)	
(b)(i)	$\left(2^{2 x}-1\right)+\left(2^{x}\right)+(x+1)+\left(2^{x+1}-3\right)+(11-x)=2(18)$	M1	1.1b
	$2^{2 x}+3\left(2^{x}\right)-28=0 \Rightarrow x=\ldots$	M1	1.1b
	$\left(2^{x}+7\right)\left(2^{x}-4\right)=0 \Rightarrow x=2$	A1	1.1b
		(3)	
(b)(ii)	The order of the nodes are 9, 15, 3, 4, 5	M1	2.1
	Therefore the graph is neither Eulerian nor semi-Eulerian as there are more than two odd nodes	A1	2.4
		A1	2.2a
		(3)	
(c)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.2 \mathrm{a} \end{aligned}$
		(2)	
(9 marks)			
Notes:			
(a) B1: Explanation referring to need for an even number of odd nodes oe			
(b) M1: Forming an equation involving the orders of the 5 odd nodes and 2(18) M1: Simplifies to a quadratic in 2^{x} and attempts to solve A1: 2 cao M1: Construct an argument involving the order of the 5 nodes A1: Explanation considering the number of odd nodes A1: Deduction that therefore it is neither Eulerian nor semi-Eulerian			
(c) M1: Interprets mathematical language to construct a disconnected graph A1: Deduce a correct graph			

Question	Scheme	Marks	AOs
9	Minimise ($C=$) $25 x+35 y$	B1	3.3
	Subject to: $(500 x+800 y \geqslant 150000 \Rightarrow 5 x+8 y \geqslant 1500$	B1	3.3
	$\frac{7}{20}(x+y) \leqslant x \leqslant \frac{13}{20}(x+y)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$
	Which simplifies to $7 y \leqslant 13 x$ and $13 y \geqslant 7 x$ $x, y \geqslant 0$	A1	1.1b
(5 marks)			
Notes:			
B1: A correct objective function + minimise B1: Translate information in to a correct inequality M1: For translating the information given into the LHS inequality M1: For translating the information given in to the RHS inequality A1: Simplifying to the correct inequalities			

