Paper 2 Option H

www.mymathscloud.com Marks Question Scheme AOs 1(a) Using the model and $v^2 = u^2 + 2as$ to find v M1 3.4 $v^2 = 2as = 2g \times 2.4 = 4.8g \implies v = \sqrt{(4.8g)}$ A1 1.1b Using the model and $v^2 = u^2 + 2as$ to find uM1 3.4 $0^2 = u^2 - 2g \times 0.6 \implies u = \sqrt{(1.2g)}$ A1 1.1b Using the correct strategy to solve the problem by finding the M1 3.1b sep. speed and app. speed and applying NLR $e = \sqrt{(1.2g)} / \sqrt{(4.8g)} = 0.5 *$ A1* 1.1b (6) Using the model and e = sep. speed / app. speed, **(b)** M1 3.4 $v = 0.5\sqrt{(1.2g)}$ Using the model and $v^2 = u^2 + 2as$ M1 3.4 $0^2 = 0.25 (1.2g) - 2gh \implies h = 0.15 (m)$ A1 1.1b (3) Ball continues to bounce with the height of each bounce being (c) B1 2.2b a quarter of the previous one (1) (10 marks) Notes: **(a) M1**: For a complete method to find vA1: For a correct value (may be numerical) M1: For a complete method to find *u*

Further Mechanics 1 Mark Scheme (Section A)

A1: For a correct value (may be numerical)

- For finding both v and u and use of Newton's Law of Restitution M1:
- A1*: For the given answer

(b)

- M1: For use of Newton's Law of Restitution to find rebound speed
- M1: For a complete method to find *h*
- For 0.15 (m) oe A1:
- (c)
- **B1**: For a clear description including reference to a quarter

		m	AOs
Question	Scheme	Marks	AOs
2(a)	Energy Loss = KE Loss – PE Gain	M1	3.3
	$=\frac{1}{2} \times 0.5 \times 25^2 - 0.5 \ g \times 20$	A1	1.1b
	= 58.25 = 58 (J) or 58.3 (J)	Al	1.1b
		(3)	
(b)	Using work-energy principle, $20 R = 58.25$	M1	3.3
	R = 2.9125 = 2.9 or 2.91	A1ft	1.1b
		(2)	
(c)	Make resistance variable (dependent on speed)	B1	3.5c
		(1)	
Notes:		(6 n	narks)
(a) M1: For a A1: For a	a difference in KE and PE a correct expression either 58 (2sf) or 58.3(3sf)		
	use of work-energy principle either 2.9 (2sf) or 2.91 (3sf) follow through on their answer to (a)		
(c) B1: For y	variable resistance oe		

			AOs 3 lb
uestion	Scheme	Marks	AOs
3 (a)	Force = Resistance (since no acceleration) = 30	B1	3.1b
	Power = Force \times Speed = 30 \times 4	M1	1.1b
	= 120 W	A1 ft	1.1b
		(3)	
(b)	Resolving parallel to the slope	M1	3.1b
	$F - 60g\sin\alpha - 30 = 0$	A1	1.1b
	F = 70	A1	1.1b
	Power = Force \times Speed = 70 \times 3	M1	1.1b
	= 210 W	A1 ft	1.1b
		(5)	
		(8 r	narks)
Notes:			
(a) B1: For	force = 30 seen		
	Tuse of $P = Fv$		
Alft: For	120 (W), follow through on their '30'		
(b)			
	resolving parallel to the slope with correct no. of terms and a correct equation	d 60g resolved	
	F = 70		
M1. E	a = a f D - E a		

M1: For use of P = Fv

A1ft: For 210 (W), follow through on their '70'

		nnn	AOs
Question	Scheme	Marks	AOs
4(a)	Use of conservation of momentum	M1	3.1a
	3mu - 2mu = 3mv + mw	Al	1.1b
	Use of NLR	M1	3.1a
	3ue = -v + w	A1	1.1b
	Using a correct strategy to solve the problem by setting up two equations (need both) in u and v and solving for v	M1	3.1b
	$v = \frac{u}{4}(1 - 3e)$	A1	1.1b
		(6)	
(b)	$\frac{u}{4}(1 - 3e) < 0$	M1	3.1b
	$\frac{1}{3} < e \le 1$	Al	1.1b
		(2)	
(c)	Solving for <i>w</i>	M1	2.1
	$w = \frac{u}{4} (1 + 9e) *$	A1 *	1.1b
		(2)	
(d)	Substitute $e = \frac{5}{9}$	M1	1.1b
	$v = -\frac{u}{6}, w = \frac{3u}{2}$	A1	1.1b
	Use NLR for impact with wall, $x = fw$	M1	1.1b
	Further collision if $x > -v$	M1	3.4
	$f\frac{3u}{2} > \frac{u}{6}$ $1 \ge f > \frac{1}{9}$	A1	1.1b
	$1 \ge f > \frac{1}{9}$	A1	1.1b
		(6)	
		(16 r	narks)
otes:			
1: For 11: For 11: For	use of CLM, with correct no. of terms, condone sign errors a correct equation use of Newton's Law of Restitution, with <i>e</i> on the correct side a correct equation setting up <i>two</i> equations and solving their equations for <i>v</i>		
	a correct expression for v		
b) /11: For	use of an appropriate inequality a complete range of values of <i>e</i>		
c) /11: For s	solving their equations for w the given answer		

Question 4 notes continued:

(d)

- **M1:** For substituting $e = \frac{5}{9}$ into their v and w
- **A1:** For correct expressions for *v* and *w*
- M1: For use of Newton's Law of Restitution, with *e* on the correct side
- M1: For use of appropriate inequality
- A1: For a correct inequality
- A1: For a correct range

www.mymainscloud.com

Question	Scheme	Marks	AOs
5(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 A1	1.1b 1.1b 1.1b
	Path: ABECDGF	A1	1.1b
	Length: 55 (metres)	Alft	1.1b
		(5)	
(b)	$AB + DG = 13 + 11 = 24 \leftarrow$	M1	1.1b
	A(BEC)D + B(ECD)G = 34 + 32 = 66	A1	1.1b
	A(BECD)G + B(EC)D = 45 + 21 = 66	A1	1.1b
	Repeat arcs: AB, DG	Alft	2.2a
		(4)	
(c)	Length = $189 + 24 = 213$ (metres)	B1ft	1.1b
		(1)	
(d)	189 + x + 34 = 213 + 2x	M1	3.1b
	x = 10 so BG is 10 m	A1	1.1b
		(2)	
		(12 n	narks)
A1: For a A1: For a A1: For a A1: For a M1: For a A1: A the	a larger number replaced by a smaller one in the working values boxes all values correct (and in correct order) at A, B, C and D all values correct (and in correct order) at E, F & G the correct path 55 or ft their final value at F 3 correct pairings of the four odd nodes (A,B, D & G) east two pairings and totals correct hree pairings and totals correct	at C, D, F	or G

www.mymathscloud.com

Decision Mathematics 1 Mark Scheme (Section B)

Question 5 notes continued:

(c)

B1ft: For 213 or 189 + their shortest repeat

M1: For translating the information in the question in to an equation involving x, 2x and 34

A1: For a correct equation leading to BG = 10 (m)

www.mymainscloud.com

		n	m
			AOs
Questi	on Scheme	Marks	AOs
6	Objective line drawn or at least two vertices tested	M1	3.1a
	For solving $y = 4x$ and $8x + 7y = 560$ to find the exact co-ordinate of the optimal point, must reach either $x = $ or $y =$	M1	1.1a
	$x = 15\frac{5}{9}$ and $y = 62\frac{2}{9}$	A1	1.1b
	Finding at least two points with integer co-ordinates from $(15 \pm 1, 63 \pm 2)$	M1	1.1b
	Testing at least two points with integer co-ordinates	M1	1.1b
	x = 15 and $y = 63$	A1	2.2a
	So the teacher should buy 15 pens and 63 pencils	A1ft	3.2a
		(7 r	narks)
Notes:			
M1:	Selecting an appropriate mathematical process to solve the problem – either	r drawing	an
	objective line with the correct gradient (or reciprocal gradient), or testing at vertices in C	least two	
M1:	Solving simultaneous equations		
A1: (cao		
M1:	Recognition that outcome from this model is non-integer and integer solution	ons are	
	required – testing two points with integer co-ordinates in at least one of $y \ge 8x + 7y \ge 560$	$\ge 4x$ and	
M1: 7	Testing at least two integer solutions in $y \ge 4x$ or $8x + 7y \ge 560$ and C		
	and deducing from tests which integer solution is both valid and ontimal		

- A1: cao deducing from tests which integer solution is both valid and optimal
- A1ft: Interpreting solution in the context of the question gives their integer values for x and y in the context of pens and pencils

Question	Scheme	Marks	AOs
7(a)(b)	$\frac{7}{13}$ D (4) $\frac{11}{17}$		
	$\mathbf{A}(5) \qquad \mathbf{E}(4) \qquad \mathbf{E}$	M1	1.1b
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	1.1b
	$\begin{array}{c c} \mathbf{B}(I) \\ \mathbf{G}(4) \\ \mathbf{G}(4)$	A1	1.1b
	C(3) $H(5)$ $H(5)$	(3)	
	11 I(10) 21	M1	2.1
	11 21	A1	1.1b
	The number(s) at the end of activity E indicate this project can be completed in 21 days	A1ft	2.2a
	Critical activities: B, G, I	A1	1.1b
		(4)	
		(7 n	narks)
Notes: M1: At le	east 5 activities and one dummy, one start		
	C,D,F,G and first dummy correct		
1: E,H.	I correct, second dummy correct and one finish		

A1: Critical activities correct

		n	AOs
Question	Scheme	Marks	AOs
8(a)	e.g. a graph cannot contain an odd number of odd nodes e.g. number of arcs $=\frac{1+3+4+4+5}{2}=8.5 \notin \mathbb{Z}$	B1	2.4
		(1)	
(b)(i)	$(2^{2x}-1)+(2^{x})+(x+1)+(2^{x+1}-3)+(11-x)=2(18)$	M1	1.1b
	$2^{2x} + 3(2^x) - 28 = 0 \Longrightarrow x = \dots$	M1	1.1b
	$(2^{x}+7)(2^{x}-4) = 0 \Longrightarrow x = 2$	A1	1.1b
		(3)	
(b)(ii)	The order of the nodes are 9, 15, 3, 4, 5	M1	2.1
	Therefore the graph is neither Eulerian nor semi-Eulerian as there	A1	2.4
	are more than two odd nodes	A1	2.2a
		(3)	
	(c)		2.5 2.2a
		(2)	
Notes:		(9)	marks)
(a)	lanation referring to need for an even number of odd nodes oe		
M1: Simj A1: 2 ca M1: Con A1: Expl	ning an equation involving the orders of the 5 odd nodes and 2(18) plifies to a quadratic in 2^x and attempts to solve struct an argument involving the order of the 5 nodes lanation considering the number of odd nodes uction that therefore it is neither Eulerian nor semi-Eulerian		
(c) M1: Inter	rprets mathematical language to construct a disconnected graph uce a correct graph		

			ww.my
Juestion	Scheme	Marks	MMW. MYI.
9	Minimise (C =) 25x + 35y	B1	3.3
	Subject to: $(500x+800y \ge 150\ 000 \Longrightarrow)\ 5x+8y \ge 1500$	B1	3.3
	$\frac{7}{20}(x+y) \leqslant x \leqslant \frac{13}{20}(x+y)$	M1 M1	3.3 3.3
	Which simplifies to $7y \le 13x$ and $13y \ge 7x$ $x, y \ge 0$	A1	1.1b
		(5	marks)

B1: Translate information in to a correct inequalityM1: For translating the information given into the LHS inequality

M1: For translating the information given in to the RHS inequality

A1: Simplifying to the correct inequalities

